Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interactions between Bacteria And Aspen Defense Chemicals at the Phyllosphere - Herbivore Interface.

Identifieur interne : 001806 ( Main/Exploration ); précédent : 001805; suivant : 001807

Interactions between Bacteria And Aspen Defense Chemicals at the Phyllosphere - Herbivore Interface.

Auteurs : Charles J. Mason [États-Unis] ; Tiffany M. Lowe-Power [États-Unis] ; Kennedy F. Rubert-Nason [États-Unis] ; Richard L. Lindroth [États-Unis] ; Kenneth F. Raffa [États-Unis]

Source :

RBID : pubmed:26961755

Descripteurs français

English descriptors

Abstract

Plant- and insect-associated microorganisms encounter a diversity of allelochemicals, and require mechanisms for contending with these often deleterious and broadly-acting compounds. Trembling aspen, Populus tremuloides, contains two principal groups of defenses, phenolic glycosides (salicinoids) and condensed tannins, which differentially affect the folivorous gypsy moth, Lymantria dispar, and its gut symbionts. The bacteria genus Acinetobacter is frequently associated with both aspen foliage and gypsy moth consuming that tissue, and one isolate, Acinetobacter sp. R7-1, previously has been shown to metabolize phenolic glycosides. In this study, we aimed to characterize further interactions between this Acinetobacter isolate and aspen secondary metabolites. We assessed bacterial carbon utilization and growth in response to different concentrations of phenolic glycosides and condensed tannins. We also tested if enzyme inhibitors reduce bacterial growth and catabolism of phenolic glycosides. Acinetobacter sp. R7-1 utilized condensed tannins but not phenolic glycosides or glucose as carbon sources. Growth in nutrient-rich medium was increased by condensed tannins, but reduced by phenolic glycosides. Addition of the P450 enzyme inhibitor piperonyl butoxide increased the effects of phenolic glycosides on Acinetobacter sp. R7-1. In contrast, the esterase inhibitor S,S,S,-tributyl-phosphorotrithioate did not affect phenolic glycoside inhibition of bacterial growth. Degradation of phenolic glycosides by Acinetobacter sp. R7-1 appears to alleviate the cytotoxicity of these compounds, rather than provide an energy source. Our results further suggest this bacterium utilizes additional, complementary mechanisms to degrade antimicrobial phytochemicals. Collectively, these results provide insight into mechanisms by which microorganisms contend with their environment within the context of plant-herbivore interactions.

DOI: 10.1007/s10886-016-0677-z
PubMed: 26961755


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interactions between Bacteria And Aspen Defense Chemicals at the Phyllosphere - Herbivore Interface.</title>
<author>
<name sortKey="Mason, Charles J" sort="Mason, Charles J" uniqKey="Mason C" first="Charles J" last="Mason">Charles J. Mason</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA. cjm360@psu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA. cjm360@psu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, The Pennsylvania State University, University Park, PA, 16802</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lowe Power, Tiffany M" sort="Lowe Power, Tiffany M" uniqKey="Lowe Power T" first="Tiffany M" last="Lowe-Power">Tiffany M. Lowe-Power</name>
<affiliation wicri:level="1">
<nlm:affiliation>Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rubert Nason, Kennedy F" sort="Rubert Nason, Kennedy F" uniqKey="Rubert Nason K" first="Kennedy F" last="Rubert-Nason">Kennedy F. Rubert-Nason</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Raffa, Kenneth F" sort="Raffa, Kenneth F" uniqKey="Raffa K" first="Kenneth F" last="Raffa">Kenneth F. Raffa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26961755</idno>
<idno type="pmid">26961755</idno>
<idno type="doi">10.1007/s10886-016-0677-z</idno>
<idno type="wicri:Area/Main/Corpus">001874</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001874</idno>
<idno type="wicri:Area/Main/Curation">001874</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001874</idno>
<idno type="wicri:Area/Main/Exploration">001874</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interactions between Bacteria And Aspen Defense Chemicals at the Phyllosphere - Herbivore Interface.</title>
<author>
<name sortKey="Mason, Charles J" sort="Mason, Charles J" uniqKey="Mason C" first="Charles J" last="Mason">Charles J. Mason</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA. cjm360@psu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA. cjm360@psu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, The Pennsylvania State University, University Park, PA, 16802</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lowe Power, Tiffany M" sort="Lowe Power, Tiffany M" uniqKey="Lowe Power T" first="Tiffany M" last="Lowe-Power">Tiffany M. Lowe-Power</name>
<affiliation wicri:level="1">
<nlm:affiliation>Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rubert Nason, Kennedy F" sort="Rubert Nason, Kennedy F" uniqKey="Rubert Nason K" first="Kennedy F" last="Rubert-Nason">Kennedy F. Rubert-Nason</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Raffa, Kenneth F" sort="Raffa, Kenneth F" uniqKey="Raffa K" first="Kenneth F" last="Raffa">Kenneth F. Raffa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="eISSN">1573-1561</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acinetobacter (physiology)</term>
<term>Animals (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Moths (microbiology)</term>
<term>Phytochemicals (metabolism)</term>
<term>Trees (microbiology)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acinetobacter (physiologie)</term>
<term>Animaux (MeSH)</term>
<term>Arbres (microbiologie)</term>
<term>Arbres (physiologie)</term>
<term>Composés phytochimiques (métabolisme)</term>
<term>Herbivorie (MeSH)</term>
<term>Papillons de nuit (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phytochemicals</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Arbres</term>
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Moths</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Composés phytochimiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Acinetobacter</term>
<term>Arbres</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Acinetobacter</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Herbivory</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Herbivorie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant- and insect-associated microorganisms encounter a diversity of allelochemicals, and require mechanisms for contending with these often deleterious and broadly-acting compounds. Trembling aspen, Populus tremuloides, contains two principal groups of defenses, phenolic glycosides (salicinoids) and condensed tannins, which differentially affect the folivorous gypsy moth, Lymantria dispar, and its gut symbionts. The bacteria genus Acinetobacter is frequently associated with both aspen foliage and gypsy moth consuming that tissue, and one isolate, Acinetobacter sp. R7-1, previously has been shown to metabolize phenolic glycosides. In this study, we aimed to characterize further interactions between this Acinetobacter isolate and aspen secondary metabolites. We assessed bacterial carbon utilization and growth in response to different concentrations of phenolic glycosides and condensed tannins. We also tested if enzyme inhibitors reduce bacterial growth and catabolism of phenolic glycosides. Acinetobacter sp. R7-1 utilized condensed tannins but not phenolic glycosides or glucose as carbon sources. Growth in nutrient-rich medium was increased by condensed tannins, but reduced by phenolic glycosides. Addition of the P450 enzyme inhibitor piperonyl butoxide increased the effects of phenolic glycosides on Acinetobacter sp. R7-1. In contrast, the esterase inhibitor S,S,S,-tributyl-phosphorotrithioate did not affect phenolic glycoside inhibition of bacterial growth. Degradation of phenolic glycosides by Acinetobacter sp. R7-1 appears to alleviate the cytotoxicity of these compounds, rather than provide an energy source. Our results further suggest this bacterium utilizes additional, complementary mechanisms to degrade antimicrobial phytochemicals. Collectively, these results provide insight into mechanisms by which microorganisms contend with their environment within the context of plant-herbivore interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26961755</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>01</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-1561</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>42</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2016</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Interactions between Bacteria And Aspen Defense Chemicals at the Phyllosphere - Herbivore Interface.</ArticleTitle>
<Pagination>
<MedlinePgn>193-201</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10886-016-0677-z</ELocationID>
<Abstract>
<AbstractText>Plant- and insect-associated microorganisms encounter a diversity of allelochemicals, and require mechanisms for contending with these often deleterious and broadly-acting compounds. Trembling aspen, Populus tremuloides, contains two principal groups of defenses, phenolic glycosides (salicinoids) and condensed tannins, which differentially affect the folivorous gypsy moth, Lymantria dispar, and its gut symbionts. The bacteria genus Acinetobacter is frequently associated with both aspen foliage and gypsy moth consuming that tissue, and one isolate, Acinetobacter sp. R7-1, previously has been shown to metabolize phenolic glycosides. In this study, we aimed to characterize further interactions between this Acinetobacter isolate and aspen secondary metabolites. We assessed bacterial carbon utilization and growth in response to different concentrations of phenolic glycosides and condensed tannins. We also tested if enzyme inhibitors reduce bacterial growth and catabolism of phenolic glycosides. Acinetobacter sp. R7-1 utilized condensed tannins but not phenolic glycosides or glucose as carbon sources. Growth in nutrient-rich medium was increased by condensed tannins, but reduced by phenolic glycosides. Addition of the P450 enzyme inhibitor piperonyl butoxide increased the effects of phenolic glycosides on Acinetobacter sp. R7-1. In contrast, the esterase inhibitor S,S,S,-tributyl-phosphorotrithioate did not affect phenolic glycoside inhibition of bacterial growth. Degradation of phenolic glycosides by Acinetobacter sp. R7-1 appears to alleviate the cytotoxicity of these compounds, rather than provide an energy source. Our results further suggest this bacterium utilizes additional, complementary mechanisms to degrade antimicrobial phytochemicals. Collectively, these results provide insight into mechanisms by which microorganisms contend with their environment within the context of plant-herbivore interactions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mason</LastName>
<ForeName>Charles J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA. cjm360@psu.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA. cjm360@psu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lowe-Power</LastName>
<ForeName>Tiffany M</ForeName>
<Initials>TM</Initials>
<AffiliationInfo>
<Affiliation>Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rubert-Nason</LastName>
<ForeName>Kennedy F</ForeName>
<Initials>KF</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Raffa</LastName>
<ForeName>Kenneth F</ForeName>
<Initials>KF</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 GM07215</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>03</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064209">Phytochemicals</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000150" MajorTopicYN="N">Acinetobacter</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="Y">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064209" MajorTopicYN="N">Phytochemicals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Acinetobacter</Keyword>
<Keyword MajorTopicYN="N">Condensed tannins</Keyword>
<Keyword MajorTopicYN="N">Detoxification</Keyword>
<Keyword MajorTopicYN="N">Gypsy moth</Keyword>
<Keyword MajorTopicYN="N">Lymantria dispar</Keyword>
<Keyword MajorTopicYN="N">P450</Keyword>
<Keyword MajorTopicYN="N">Phenolic glycosides</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>12</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>02</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26961755</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-016-0677-z</ArticleId>
<ArticleId IdType="pii">10.1007/s10886-016-0677-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Chem Ecol. 2011 Aug;37(8):808-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21710365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2015 Jan 7;60:17-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25341109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1983 Jul 15;224(2):494-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6870275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Jun;79(11):3468-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23542624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21354580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2015 Nov;70(4):1012-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25985770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2015 Jan;41(1):75-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25475786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Entomol. 2014 Jun;43(3):595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24780292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Nov 5;324(1):387-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2015 Jul;41(7):651-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26099738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 May;29(5):1083-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Drug Targets Infect Disord. 2002 Jun;2(2):143-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12462145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jun;198(4):1203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23448507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2011 May;162(4):393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21320596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2009 Apr;55(4):297-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19111746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1497-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jul;162(3):1324-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23729780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Aug;37(8):857-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21748301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Jul;27(7):1289-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2014 Jul;175(3):901-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24798201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 04;8(9):e73827</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24023907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1989 Oct;81(2):219-224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Oct;178(20):5853-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8830678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2004 Jun;7(3):239-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15196490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Mar;28(3):286-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25423265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2009 Mar 7;276(1658):987-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2000 Jun;30(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10955904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Jul;73(13):4308-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 29;109(22):8618-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22529384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Dec;13(9):1089-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22827542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1803-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12563031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Feb;193(4):963-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21169494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 1980 Sep-Oct;28(5):947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7462522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Insect Sci. 2014 Oct;4:1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28043402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2016 May;18(5):1379-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26234684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1978;32:349-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">360969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Dec;32(5):701-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12472686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Dec 12;15:1096</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25495900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Oct;32(10):2235-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15728-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24019469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1985 Apr;11(4):485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24310070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2013 Jul;39(7):1003-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23807433</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Mason, Charles J" sort="Mason, Charles J" uniqKey="Mason C" first="Charles J" last="Mason">Charles J. Mason</name>
</noRegion>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<name sortKey="Lowe Power, Tiffany M" sort="Lowe Power, Tiffany M" uniqKey="Lowe Power T" first="Tiffany M" last="Lowe-Power">Tiffany M. Lowe-Power</name>
<name sortKey="Lowe Power, Tiffany M" sort="Lowe Power, Tiffany M" uniqKey="Lowe Power T" first="Tiffany M" last="Lowe-Power">Tiffany M. Lowe-Power</name>
<name sortKey="Mason, Charles J" sort="Mason, Charles J" uniqKey="Mason C" first="Charles J" last="Mason">Charles J. Mason</name>
<name sortKey="Raffa, Kenneth F" sort="Raffa, Kenneth F" uniqKey="Raffa K" first="Kenneth F" last="Raffa">Kenneth F. Raffa</name>
<name sortKey="Rubert Nason, Kennedy F" sort="Rubert Nason, Kennedy F" uniqKey="Rubert Nason K" first="Kennedy F" last="Rubert-Nason">Kennedy F. Rubert-Nason</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001806 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001806 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26961755
   |texte=   Interactions between Bacteria And Aspen Defense Chemicals at the Phyllosphere - Herbivore Interface.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26961755" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020